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Motivation

Geometric understanding is essential to many areas of mathematics, and it can lead

to new ideas and insights. In this poster, we explore a geometric computation of

cohomotopy sets in co-degree one, a generalization of the mapping degree for maps

into spheres. While these sets have been previously understood by Taylor [4] in a

purely algebraic manner, our approach offers a novel perspective with geometric

constructions. We extend results from Kirby, Melvin, and Teichner [2] to the non-

orientable case in dimension four and higher, as well as results from Konstantis [3]

to non-orientable Pin− manifolds.

The Setup

1. X is an (n + 1)-dimensional closed and connected manifold, n ≥ 3.
2. [X, Sn] = set of maps X → Sn up to homotopy.

3. F1(X) = cobordism group of embedded links L ⊂ X with trivialization of νL.

4. H1(X ;Zw) = first homology of X with local coeff. in the orientation sheaf.

The Pontryagin-Thom construction

There is an isomorphism F1(X) ∼= [X, Sn] given by the Pontryagin-Thomconstruction.

Here, the map [X, Sn] → F1(X)maps a homotopy class to the preimage of a regular
value of Sn. The inverse collapse map F1(X) → [X, Sn] takes a normally framed
submanifold M , and uses the product neighborhood theorem to construct a map

fM : X → Sn. This construction is illustrated in Figure 1.
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Figure 1. The collapse map.

The Pontryagin-Thom isomorphism is a refinement of twisted Poincaré duality:

[X, Sn] F1(X)

Hn(X ;Z) H1(X ;Zw).
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Preliminaries

A variation of Thom’s seminal work [5] discussed in Atiyah [1] implies that

H1(X ;Zw) ∼= cobordism group of embedded links L ⊂ X

with orientation of νL.

Moreover, there is a forgetful map h : F1(X) → H1(X ;Zw) that forgets the framing
of νL but remembers the orientation.

For the following, we need to distinguish between two different types ofmanifolds:

1. X is type I ⇔ ∃ surface Σ ⊂ X with νΣ orientable but non-trivializable.

2. X is type II ⇔ ∀ surfaces Σ ⊂ X with νΣ orientable ⇒ νΣ is trivializable.

The key ingredient to all proofs is that the normal bundle of each

orientation-preserving circle has exactly two trivializations up to homotopy be-

cause π1(SO(n)) = Z2.

Type I Manifolds

A manifold X is of type I if and only if h : F1(X) → H1(X ;Zw) is an isomorphism.
If ker(h) is trivial, we can glue both null-cobordisms (one for each trivialization of the
circle) to construct a surface Σ that characterizes type I. If we have such a surface
Σ, we can cut it into two pieces D and Σ0 to obtain two null-cobordisms, and thus

ker(h) is trivial. The construction (with suppressed dimensions) is illustrated in
Figure 2.
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Figure 2. The surface Σ = D ∪ Σ0 with νΣ orientable but non-trivializable.

Type II Manifolds

If X is of type II, the framed cobordism group F1(X) fits into the short exact
sequence

(1) 0 Z2 F1(X) H1(X ;Zw) 0.
h

The associated extension is determined by w2
1(X) + w2(X), the Pin−

-obstruction

class. As a special case, we get that this sequence splits if and only if X is Pin−.

Pin Manifolds

If X is Pin−, a given Pin−-structure for X determines a splitting map F1(X) → Z2
of (1). Let us denote

Split(X) := {splitting maps F1(X) → Z2 of (1)},

P in(X) := {equivalent Pin−-structures of X}.

We prove that there is a commutative diagram

P in(X) × H1(X ;Z2) P in(X)

Split(X) × H1(X ;Z2)/〈w1(X)〉 Split(X),

act

act

where all group actions are simply transitive. This shows that P in(X) → Split(X) is
2-to-1 if X is non-orientable and Spin(X) → Split(X) is 1-to-1 if X is orientable.

Equivalently, a Pin−-structure of X amounts to a choice of trivialization of the

normal bundle over each homotopy class of orientation-preserving circles of X –

up to w1(X) action.

Application to Vector Bundles

Suppose X is of type I or Pin− and E → X is an spin vector bundle of rank n. The
zero locus of a transversal section gives rise to a link L ⊂ X . In particular, E|L ∼= νL

and a spin structure on E gives a trivialization ϕ of νL. The element [L, ϕ] ∈ F1(X)
defines a refinement of the Euler class. That is, [L, ϕ] = 0 if and only if E admits a

non-vanishing section. The idea is to push the zeros away using the null-cobordism

as illustrated in Figure 3.
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Figure 3. Pushing the zero locus away from zero.
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